

Context-based security

State of the art, open research topics and a case study

Stephan Sigg

The fifth International Workshop on Context-Awareness for Self-Managing Systems, CASEMANS 2011, 18.09.2011, Beijing, China

Security demands are omnipresent and increasing in number

Threats + requirements for security precautions increase simultaneously

Have you ever...

- lost/forgot your password?
- wondered that the password has to be exchanged rather frequently
- utilised identical passwords for different accounts
- used weak passwords for convenience
- experienced security precautions as a hassle
- disabled password/pin? (My phone was delivered with pin disabled by default)

We could use biometric data

We could use biometric data ...

- Fingerprints
- Iris scan
- DNA
- Face recognition

We could use biometric data, BUT ...

Is this really more secure than the pin/password-based approaches?

- Or is it probably only more convenient?
 - Biometric data shall be easy to obtain/verify by legal authorities but difficult to forge/steal.
 - Commonly, this contradiction is solved in favour of the former aspect for convenience.

What are the benefits of using context as a basis of security

- Context is very personalised information
- Context changes frequently with time and location
- We can adapt the security level of applications to their context
- Less obtrusive but at the same time more secure?

Aspects of security through context

Password-less authentication

- Context data is not forgotten like pins
- Enables new/intelligent, potentially intuitive security schemes
- High entropy has to be guaranteed
- Provide less-/un-obtrusive security schemes
- Prevent people from using weak passwords

Location is an important context

Current applications location dependent

Privacy concerns

- People have grown sensitive to providing personal information
- Privacy threads are perceived differently ¹

¹L. Nehmadi, J. Meyer. A system for studying usability of mobile security. *Third International Workshop on Security and Privacy in Spontaneous Interaction and Mobile Phone Use*, in conjunction with Pervasive 2011, 2011

Outline

Motivation

Audio as a key

Case study

Conclusion

Using audio for device authentication

- Can we use ambient audio from devices in proximity as a common secret for device pairing?
 - Establish <u>trust-based</u> perception of security among mobile devices ².
 - Establish ad-hoc secure channel among devices (<u>non-interactive</u>)
 - Establish a simplified and less-/un-obtrusive security mechanism
 - Switch among several security levels-based on context

²C. Dupuy, A. Torre. Local clusters, trust, confidence and proximity, Clusters and Globalisation: The development of urban and regional economies, pp. 175–195, 2006.

Audio fingerprints for device pairing

- Create audio fingerprints as features for ambient audio ³
- Utilise error correcting codes to account for differences in fingerprints

³ A. Wang. An Industrial Strength Audio Search Algorithm, *International Conference on Music Information Retrieval*, 2003

Audio fingerprints for device pairing

- An audio fingerprint is-based on the fluctuation in energy differences in adjacent frequency bands over time
 - Tolerant for low noise and changes in absolute energy

$$f(i,j) = \begin{cases} 1 & \text{if } E(i,j) - E(i,j+1) - \\ & (E(i-1,j) - E(i-1,j+1)) > 0, \\ 0 & \text{otherwise.} \end{cases}$$

Using audio for device authentication

ID	Captured audio	Key
1		1100101000101
2		1000101010001
3		0001000110011

Issues

- Context is a noisy source.
 - Measurement inaccuracies
 - Often strict time or location dependence
 - Classification inaccuracies
- Accurate time synchronisation required

Current approaches

- The Candidate key protocol⁴
 - Acceleration data of shaking processes
 - Iterative key generation
- Hamming distance among binary keys 5

⁵D. Bichler, G. Stromberg, M. Muemer. Key generation-based on acceleration data of shaking processes, *9th international Conference on Ubiquitous Computing*, 2007.

⁴Rene Mayrhofer. The Candidate Key Protocol for Generating Secret Shared Keys from Similar Sensor Data Streams, Security and Privacy in Ad-hoc and Sensor Networks, pp. 1–15, 2007

Device pairing with fuzzy cryptography

- The received fingerprint at two devices is not identical due to
 - Recording errors
 - Timing errors
 - Noise

Outline

Motivation

Audio as a key

Case study

Conclusion

- We utilised Reed-Solomon error correcting codes in order to account for these bit errors (RS(q, m, n))
 - $lacksquare \mathcal{A} = \mathbb{F}_q^m, \mathcal{C} = \mathbb{F}_q^n: q$ prim.
- in conjunction with the Secure Hash Algorithm with 256 bit (SHA-256)

Microphones					
Impedance			\leq 22 k Ω		
Current consumption	$\leq 0.5 \; \mathrm{mA}$				
Frequency response	$100~\mathrm{Hz}\sim16~\mathrm{KHz}$				
Sensitivity		-3	$8 \text{ dB} \pm 2 \text{ dB}$		
Scenarios	Scenario 1	Scenario 2/3	Scenario 4		
Microphone distance	$pprox 1 \mathrm{\ m}$	$pprox$ 4 ${ m m}$	$pprox 1 \mathrm{\ m}$		
Distance to speaker	$.8 \; \mathrm{m} - 3 \; \mathrm{m}$.8 $\mathrm{m}-4~\mathrm{m}$	$.5~\mathrm{m} - 3~\mathrm{m}$		

Scenarios	1	2	3	4
Successful attempts	0.9	0.4	0.0	0.8
Bit errors corrected (∅)	179.6	170.75	_	173.75

- Controlled Indoor environment
- Microphones attached to left and right ports of an audio card (1.5m, 3m, 4.5m, 6m)
- Audio source (music, clap, snap, speak, whistle)
- Loudness:
 - quiet (approx 10 23dB)
 - medium (approx 23 33dB)
 - loud (\approx 33 45dB)
- Pairwise comparison of hamming distance: 7500 comparisons; 300 comparisons for simultaneous recordings

$$= \underbrace{ \begin{array}{c} \Delta(A,S) \\ A \end{array}} \cdot \underbrace{ \left(\left(\begin{array}{c} \bullet \\ \bullet \\ S \end{array} \right) \right) } \cdot \underbrace{ \begin{array}{c} \Delta(B,S) \\ \bullet \\ B \end{array}} \cdot \underbrace{ \begin{array}{c} \bullet \\ \bullet \\ B \end{array}}$$

- m=128
- minimum overlap 62.5%

	Audio sample					
	clap	music	snap	speak	whistle	
1	189	192	190	191	191	
2	192	192	192	191	191	
3	191	188	192	191	_	
4	190	192	190	191	192	
5	192	190	191	192	_	
6	192	191	191	188	192	
7	189	190	190	192	192	
8	192	186	186	192	192	
9	192	189	189	192	189	
10	192	196	196	192	_	

- m=152
- minimum overlap 65%

	Audio sample					
	clap	music	snap	speak	whistle	
1	180	179	180	180	_	
2	179	179	180	180	180	
3	179	_	180	180	178	
4	_	_	180	-	180	
5	180	180	180	180	179	
6	180	180	179	180	180	
7	179	180	180	180	180	
8	-	178	180	179	180	
9	-	179	178	180	180	
10	180	179	179	178	179	

- m= 204
- minimum overlap 70%

	Audio sample				
	clap	music	snap	speak	whistle
1	_	_	_	_	_
2	_	_	_	154	-
2 3	_	_	153	_	_
4	_	_	_	_	_
5	_	_	_	_	-
6	_	_	154	_	_
7	_	_	_	_	_
8	_	_	_	_	_
9	_	_	_	_	-
10	_	_	_	_	_

Conclusion

- We have demonstrated an unobtrusive mechanism for secure ad-hoc device pairing-based on ambient audio
 - Noise tolerant due to utilisation of error correcting codes
 - Error tolerance is a design parameter
- Audio fingerprint as feature
- Can be generalised to other context classes
- Instrumented and tested on laptop computers
- Entropy: No bias observed in dieHarder statistical tests
- Check our paper for open research issues and opportunities of context-based security

Questions?

Stephan Sigg sigg@nii.ac.jp