
90	 PERVASIVE computing� Published by the IEEE CS   n   1536-1268/10/$26.00 © 2010 IEEE

C O N T E X T  P R E D I C T I O N

I n the field of pervasive computing, 
researchers use context prediction to 
infer future context information— 
classified and possibly aggregated fea-
tures of sensor readings that describe 

an entity’s situation.1 Context prediction algo-
rithms use the set of observed past and pres-
ent contexts as input data. The possibilities of 
context-aware applications are then extended 
due to this widened situation awareness. To 

be feasible, context prediction 
requires that a distinguishable 
process underlies the observed 
context sequence. Application 
domains range from improved 
sensor network resource utili-
zation to accident prevention 
to assistance in development 
processes. Prominent context-
prediction techniques are Mar-
kov predictors,2 SOM (self-
organizing maps) prediction 

methods,3,4 the state predictor method,4,5 neu-
ral network approaches,5,6 Bayesian networks,5 
prediction based on PCA (principal component 
analysis),7 ARMA (autoregressive moving aver-
age) predictors,4 and Kalman filter methods.8 

Naturally, these algorithms require high pre-
diction accuracy paired with long prediction 
horizons. To be suitable for ubiquitous environ-

ments, processing and memory requirements 
must be low and should have a reasonable error 
tolerance for input data. Also, algorithms should 
be able to handle multiple data types because 
context can be represented both numerically and 
nonnumerically (see Figure 1). Finally, a broader 
scope of context information is preferable be-
cause it usually provides a better situation de-
scription. However, a context-aware system is 
then likely required to handle multidimensional 
and multitype context sequences.

We compare the alignment approach to four 
other techniques to determine its suitability in 
various context prediction tasks in ubiquitous 
computing environments.

The Alignment Prediction Approach 
Alignment prediction relies on typical context 
patterns. This method can handle multidimen-
sional and multitype context sequences and has 
reasonable memory requirements and a scalable 
error tolerance. It uses alignment techniques that 
computational biologists have applied to find ap-
proximately matching patterns between RNA or 
DNA sequences. It can also abstract from pro-
cess noise in the input sequence. This is possible 
because the similarity between observed and 
typical sequences is computed by a metric that 
rewards smaller deviations in context time series 
elements with smaller penalty costs. 

The authors detail the alignment prediction approach—a time-series-
estimation technique applicable to both numeric and nonnumeric 
data—and compare it to four other prediction approaches to determine 
context prediction accuracy in ubiquitous computing environments.
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In alignment prediction techniques, 
most similar subsequences are com-
puted between two patterns,9,10 esti-
mating the similarity between sym-
bols  of an alphabet  using a metric 
δ : ∑×∑ → � . We can compute the op-
timal solution iteratively for increasing 
subsequence lengths.11 For two patterns 
p1,…,pn and q1,…,qm, we calculate the 
alignment with maximum weight using 
integer programming:
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In this formula, the gap symbol “−” 
represents a pattern’s missing symbol. 
When noise is induced by additional 
symbols in one sequence, the insertion 
of this gap symbol at the respective 
position of the other enables the com-
parison of both sequences regardless of 
noise or additional context values. The 
“0” is necessary to find an alignment 
between subsequences instead of com-
plete sequences. 

Context prediction using alignment 
prediction methods is a three-step pro-
cess. First, we identify typical context 
patterns as either exact or approximate 
repeats in the observed context se-
quence. (See Computational Molecular 
Biology—An Algorithmic Approach 
for a summary of suitable algorithms 
for this task.10)

Next, we compute semiglobal align-
ments between a suffix of the observed 
sequence and each typical sequence 
to identify a typical pattern. We ap-
ply the Needleman-Wunsch algorithm 
to calculate all semiglobal alignments 
between two context time series.11 Al-
ternatively, we can calculate semiglobal 

alignments using fast heuristics, for ex-
ample, the Blast or Fasta algorithm.9 

The final step is prediction. Up to this 
point, we’ve computed subsequences of 
typical patterns that are most similar 
to a suffix of the observed sequence. 
Because the compared sequences are 
considered typical, the continuation of 
the most similar typical subsequence 
is the prediction. Figure 2 illustrates 
a prediction computation. The matrix 
is filled from top to bottom and from 
left to right using the weight calcula-
tion detailed above. The alignment 
matrix’s first row and column are ini-
tialized with 0 so that the algorithm ig-
nores mismatches at the start of both 
sequences. The predicted pattern is a 
suffix of the typical sequence that starts 
after the index of the subsequence with 
the best alignment rating (maximum 
weight in row n).

The alignment method is particularly 
well suited to predict (approximately) 
reoccurring typical patterns. The pre-
diction horizon’s length is bounded by 
the typical patterns’ length. The ap-
proach is robust against measurement 
inaccuracies, as optimal alignments 

might contain gaps and mismatches. 
The similarity metric  controls the de-
gree to which the algorithm tolerates 
measurement errors. 

We can compute alignments in O(k
2
) 

steps, where k represents the maximum 
length of all context sequences consid-
ered. The predicted sequences’ calcula-
tion requires

O i O k
i

k( ) ( )
=

∑ =
1

2

operations in the worst case (that is, 
when all sequences are of identical 
maximum length k). With  typical 
patterns, the overall complexity is then 
O((k2 + k2) ) = O(k2), because the ob-
served sequence is aligned with every 
typical sequence. Using fast heuristics, 
the runtime decreases to O(k) with 
reasonable prediction accuracy.12–14 

Note that the runtime doesn’t depend 
on the number of distinct contexts but 
only on the length and count of typical 
sequences. Therefore, we propose the 
use of alignment prediction techniques 
for medium- to large-scale ubiquitous 
computing scenarios with typical  
patterns. The input sequence can be 
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Figure 1. Several aspects of context. 
Because context can be represented 
both numerically and nonnumerically, 
context prediction algorithms should be 
able to handle multiple data types.
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numeric or nonnumeric, or even multi
dimensional, mixed-type contexts. 

Context Prediction Algorithms 
Here, we detail the four prediction 
approaches we use in our simulation  
studies—Markov, ARMA, PCA, and 
ICA (independent component analysis). 
(See Development of a Novel Context 
Prediction Algorithm and Analysis of 
Context Prediction Schemes for in-
formation on prediction algorithms’ 
strengths and weaknesses.1)

Markov Processes 
Markov processes constitute a major 
branch in the theory of stochastic pro-
cesses. They’re popular for their sim-
plicity and applicability to a diverse set 
of problems. 

In Markov context prediction do-
mains, contexts are represented by 
states, and transition probabilities 
for each pair of consecutive observa-
tions are represented by Markov chain 
state transitions. In an order-k Markov 
chain, each state represents k consecu-
tive contexts (or observations), and 
transitions between states correspond 
to observations of following contexts. 
Given a recently observed context, the 
Markov algorithm computes a probabil-
ity distribution for an observed context 
sequence’s next outcome. Iterating this 

process extends the prediction horizon. 
Markov prediction techniques are op-

timal in the sense that they can always 
achieve the highest possible prediction 
accuracy for infinite binary random se-
quences.15 The model can be applied to 
numerical and nonnumerical data alike. 
However, a prediction that reaches fur-
ther into the future implicitly utilizes al-
ready predicted contexts, which might 
decrease the prediction accuracy. 

The runtime depends on the prob-
ability graph’s size. When C is the set 
of different observed contexts, a most 
probable next state is computed in time 
O(|C|) in the worst case (that is, all pos-
sible |C| state transition probabilities 
are nonzero for this state). The most 
probable n future contexts are com-
puted in time O(n • |C|

2
). 

Prediction approaches with simi-
lar properties include hidden Markov 
models (HMMs), conditional random 
fields (CRFs), and dynamic Bayesian 
networks.16–18 

ARMA 
Despite developments in nonlinear 
methods, the most common stochas-
tic models in time-series prediction 
are linear, such as the autoregressive 
moving average processes.19 Because 
ARMA processes are already designed 
to approximate numeric time-series 

development, the only requirement for 
ARMA to be applicable to context pre-
diction tasks is that context types are 
numerical. 

ARMA processes achieved excellent 
results in context prediction tasks.4,20 
Because it combines autoregressive and 
moving average time-series-estimation 
models, this approach is well suited 
to predict trends and periodic pat-
terns. It’s also applicable in both one- 
dimensional and multidimensional 
datasets. The computational complex-
ity is O(k log(k)), where k is an observed 
time series’ length.19 No preprocessing 
or separate learning is required. 

However, because ARMA prediction 
approaches are only applicable to se-
quences of numeric contexts, they can’t 
be used in many problem domains. Al-
though we can avoid this restriction by 
mapping nonnumeric contexts to nu-
meric contexts (for example, using bi-
nary indicator feature vectors), this can 
create drawbacks such as dimension in-
flation or loss of neighborhood relations. 

Principal Component Analysis 
PCA is a technique to identify patterns 
in high-dimensional data. It’s used in 
face recognition and image compres-
sion and can highlight data similari-
ties and differences.21 The approach 
reduces the number of dimensions by 
which data is represented without los-
ing characteristic information. 

Basically, PCA computes the eigen-
vectors and eigenvalues of the input 
data’s covariance matrix. Eigenvalues 
indicate the significance of the data 
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Figure 2. Calculation of a prediction 
based on an optimum alignment 
between input patterns. The first row 
and column of the alignment matrix are 
initialized with 0 so that the algorithm 
ignores mismatches at the start of both 
sequences. The predicted pattern is a 
suffix of the typical sequence that starts 
after the index of the subsequence with 
the best alignment rating (maximum 
weight in row n).
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description’s corresponding eigenvec-
tor. A vector representing new sampled 
data is then transformed to a new ba-
sis spanned by the most relevant eigen
vectors—the principal components. 

To predict context, we apply PCA to 
the input data’s binary indicator feature 
vectors. Then, we divide the input data 
into various vectors that represent com-
mon behavior patterns (for example, 24 
hours to represent a whole day). Result-
ing principal components serve as rep-
resentatives describing the dataset.7 

PCA initializes the hours to be pre-
dicted in a binary feature vector with 
0. This suffix has identical distance to 
all complete binary feature vectors’ suf-
fixes of the same length. The vector’s 
prefix represents its similarity to other 
feature vectors from the training data. 
The vector undergoes a basis transfor-
mation to the vector space spanned by 
the principal components and is asso-
ciated with the most similar principal 
component. The corresponding binary 
feature vector’s continuation serves as 
a prediction. 

The PCA-based approach achieved 
high prediction accuracy on a da-
taset with three context classifica-
tions (Home, Work, Elsewhere).7 The 
method’s runtime depends on the num-
ber of distinct contexts |C| in a sce-
nario, because the binary feature vec-
tor’s length increases with this value. 
When M behavior patterns are char-
acterized by  samples, the method’s 
runtime is O (M ∙ ( ∙ |C|)

2
) for nonnu-

meric context patterns and O(M ∙ 
2
) 

in scenarios with numeric input pat-
terns only (no transformation to binary 
indicator feature vectors is required).22 
Because  is typically a multiple of the 
context history size, k, we can calcu-
late the runtime for nonnumerical in-
put as O (M ∙ (k ∙ |C|)

2
) and for numeri-

cal input as O(M ∙ k
2
). Therefore, this 

method is best suited when the number 
of distinct contexts |C| is reasonable 
(|C|<<k), especially in scenarios with 
nonnumeric input patterns. 

For the PCA-prediction approach, a 
priori knowledge of common behavior 

patterns’ length and occurrence time is 
required. When typical patterns don’t 
reappear consistently at similar times, 
the prediction accuracy is reduced. 
Whereas many patterns in ubiquitous 
settings exist that are static in nature 
(for example, people sleep at night, then 
have breakfast, go to work, eat lunch, 
go back to work, and finally come 
back home), other patterns—although 
typical—might not follow such a strong 
scheme. Consider, for example, having 
phone calls or meetings. Typically, the 
time of day, duration, and activity flow 
differ for these situations. Because the 
PCA prediction requires common be-
havior patterns of a predefined length, 
these situations are hard to predict ac-
curately with a PCA approach.  

Independent Component Analysis
ICA is applied to audio processing, bio-
medical signal processing, image pro-
cessing, and telecommunications.23 
This method transforms data linearly 
into components that are maximally 
independent of one another while, at 
the same time, describing the data’s rel-
evant properties. Similar to PCA, ICA 
identifies components that describe 
properties. However, whereas the PCA 
reduces the data dimension, the ICA 
might reduce, increase, or sustain the 
data dimension. 

ICA achieves context prediction in 
a similar way as PCA. The main dif-
ference is that ICA uses independent 
components instead of principal com-
ponents. With |C| contexts and M be-
havior patterns characterized by  = 
O(k) samples, the computational com-
plexity is O(M ∙ (k ∙ |C|) log(k ∙ |C|)+M

2
 

∙ k ∙ |C|).24 

Experimental Studies
We detail the results we obtained for 
ARMA, Markov, PCA-based, ICA-
based, and alignment prediction ap-
proaches in four simulations. Two sce-
narios contain numerical data only and 
are characterized by trends and peri-
odic patterns and by typical sequences, 
respectively. The other two studies use 

nonnumeric data characterized by fre-
quent, typical sequences with few and 
numerous labels, respectively. For the 
numeric datasets, we compare the pre-
diction algorithms’ accuracy using the 
RMSE (root-mean-square error) met-
ric. For a predicted time series of length 
n, it’s defined as

RMSE
p d

n

i i
i

n

=
−

=∑ ( )2
1 .

In this formula, pi
 
denotes the predicted 

value at time i and di is the value that 
actually occurs. In the nonnumeric sce-
narios, we measure accuracy using the 
percentage of correct predictions. 

Wind Power Prediction 
Wind farms consist of a multitude of 
wind turbines whose performance 
fluctuates and depends heavily on 
wind power. Because the power sup-
ply system can’t handle these fluctuat-
ing power curves, methods that predict 
wind power are necessary to schedule 
the power expulsion. 

Our dataset contained wind power 
samples from a German wind farm. 
Samples were recorded hourly from 
February 2004 to April 2005. We used 
three-quarters of the data samples as 
training data and the remaining part 
for the simulation. We use alignment, 
ARMA, and Markov prediction ap-
proaches on this dataset. 

The alignment approach used a 
context history of six hours with one 
sample per hour. Markov prediction 
was based on an order-six Markov 
model. The ARMA approach required 
more information about the observed 
context pattern to accurately extract 
trends and periodic patterns. Even 
with 100 hours of context history, the 
ARMA algorithm was inferior to both 
Markov and alignment prediction (see 
Figure 3). We therefore used the com-
plete context history (at least 750 hours 
for one prediction) for the ARMA ap-
proach. Prediction horizons ranged 
from 1 to 20 hours. 
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We define the similarity metric as 
the difference between pairwise wind 
power samples. The alignment predic-
tion approach used only one typical  
pattern—the wind power samples’ 
complete training data. This accounts 
for the fact that the dataset length 
wasn’t sufficient to cover periodic oc-
currences of patterns in distinct sea-
sons. The underlying Markov chain 
for the Markov prediction approach 
was also based on the complete train-
ing set. 

ARMA and Markov methods’ accu-
racy are nearly identical for short pre-
diction horizons, whereas the align-
ment prediction approach performs 
worse (see Figure 3). With prediction 
horizons that exceed the context his-
tory size (more than six hours), align-
ment prediction outperforms Markov 
but doesn’t reach the same accuracy 

as the unrestricted ARMA approach. 
We conclude that the ARMA predic-
tion approach is best suited in an envi-
ronment characterized by trends and 
periodic patterns. However, with re-
stricted context history information, 
the alignment prediction approach is 
better suited. 

Location Prediction  
on Raw GPS Data 
In the second study, we considered the 
prediction of a mobile user’s location 
trajectory. We sampled an individual’s 
GPS positions for 20 days. Our sam-
pling hardware consisted of a mobile 
phone and a GPS receiver. The GPS re-
ceiver was connected to the phone via 
Bluetooth. We recorded GPS informa-
tion every two minutes. When no GPS 
was available (for example, when the 
individual was indoors), we used the 

last available sample to approximate 
the position. 

To obtain the optimal sampling fre-
quency, we considered several sam-
pling intervals. Table 1 depicts the 
average time observed for the user to 
propagate a fixed distance. We chose 
a sampling interval of 20 minutes to 
sample context changes but not the 
process noise. 

We used the ARMA, Markov, and 
alignment prediction approaches and 
defined the alignment metric  by the 
pairwise Euclidean distance between 
GPS measurements. Typical patterns 
in this study have been determined us-
ing alignment methods. When a pat-
tern of sufficient length had an align-
ment rating below a defined threshold 
value, we considered this to be a new 
typical pattern. Also, the prediction al-
gorithm frequently updated the Mar-
kov chain with new observed contexts. 
Otherwise, we used the same configu-
ration as in the previous simulation for 
all three algorithms. 

The ARMA approach isn’t well 
suited for this dataset (see Figure 4). 
It achieves reasonably accurate pre-
dictions for short prediction horizons 
only. Whereas the first-order Markov 
prediction approach doesn’t suffer 
from the data structure that much, pre-
diction accuracy gradually decreases 
with an increasing prediction horizon. 
Because of its reliance on typical con-
text sequences expected in the user’s 
everyday behavior, the alignment pre-
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Figure 3. Prediction accuracies for the 
alignment, ARMA (auto regressive 
moving average), and Markov prediction 
algorithms. ARMA and Markov methods’ 
accuracy are nearly identical for short 
prediction horizons, whereas the 
alignment prediction approach performs 
worse. With prediction horizons that 
exceed the context history size (more 
than six hours), alignment prediction 
outperforms Markov but doesn’t reach 
the same accuracy as the unrestricted 
ARMA approach.

TABLE 1 
Sampled GPS input fluctuations.

Distance (meters) Average time to propagate distance (minutes)

5 6.866 

10 8.9846 

20 13.3859 

30 17.175 

50 24.9622 

100 43.0246 



OCTOBER–DECEMBER 2010	 PERVASIVE computing� 95

diction approach’s accuracy remains 
quite stable for an increasing prediction 
horizon. Because the method computes 
a prediction on the basis of the similar-
ity of observed and typical sequences, 
the prediction will either fail to match 
the actual sequence or will approxi-
mately match the sequence regardless 
of its length. The prediction accuracy 
is therefore nearly independent of the 
prediction horizon. 

The Markov algorithm is more suit-
able for short prediction horizons of 
up to 80 minutes, whereas the align-
ment algorithm performs better for 
longer prediction horizons. 

Location Prediction  
on Clustered GPS Data 
We applied 36 labels—such as Market, 
University, and Home—to the raw GPS 
coordinates in the previous study. Ev-
ery label was associated with a center 
position specified by GPS coordinates 
and a radius. Each GPS coordinate 
within this radius had a correspond-
ing label; any GPS samples that didn’t 
fall in any of these clusters were given 
the label Elsewhere. For the prediction 
process, we used a sampling frequency 
of 20 minutes and used the labeled lo-
cations’ trajectory as input. We didn’t 
provide GPS coordinates to the algo-
rithms. Again, we measured the pre-
diction approaches’ accuracy using 
RMSE, where the labels’ associated 
center locations are used for the simi-
larity measurement. 

We used a Markov prediction al-
gorithm, an alignment prediction ap-
proach, and PCA- and ICA-based pre-
diction methods. For PCA and ICA 
techniques, we achieved best results 
with typical behavior patterns that 
capture a whole day (72 samples or 
24 hours). We used a default context 
history size of 16 hours. However, 
because the typical behavior patterns 
captured only 24 hours, we adapted 
the context history size by increasing 
the prediction horizon. The alignment 
prediction approach’s context history 
size was set accordingly. We based the 

Markov prediction on an order-two 
Markov process. 

In this scenario, with a reasonable 
number of nominal contexts linked to-
gether by their neighborhood relation, 
the Markov prediction approach has 
the best prediction accuracy (see Figure 
5) because we can model the observed 
movement as a traversal between loca-
tions. This is exactly how the Markov 
prediction approach models the under-
lying state model. The ICA and align-
ment prediction approaches perform 
similarly in this scenario, whereas the 
PCA prediction technique’s perfor-
mance decreases with an increasing 
prediction horizon. 

Prediction Based  
on Reality Mining Dataset 
A PCA-based prediction approach 
achieves high performance on a 
dataset of cell-ID-based location  
information.7 We applied the align-

ment, the PCA-based, and ICA-based 
prediction approaches on this real-
ity mining dataset to predict mobile 
users’ future locations.25 The data-
set holds 100 subjects’ location, ac-
tivity, and interaction information 
gathered from mobile phones over a 
nine-month time period. We chose an 
individual with a high number of data 
samples to predict location (GPS cell 
ID). In an online learning process, we 
used all previously observed contexts 
to train the prediction methods. Con-
texts are input at a frequency of 20 
minutes. For all three approaches, the 
context history and the prediction ho-
rizon are 24 hours. 

Because only the GSM towers’ la-
bels are given, we measure accuracy by 
the percentage of correctly predicted  
context labels, instead of the RMSE. 
We associate the Home, Work, and 
Elsewhere labels with distinct cell 
towers according to the amount of 
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Figure 4. Markov, ARMA, and alignment prediction algorithms for the root-mean-
square error (RMSE) metric with various sampling intervals and average error 
at various prediction horizons. The Markov algorithm is more suitable for short 
prediction horizons of up to 80 minutes, whereas the alignment algorithm performs 
better for longer prediction horizons.
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time spent at corresponding towers at 
meaningful times during a day. Figure 
6 depicts the ratio of accuracy between 
two prediction techniques (that is, cor-
rect predictions of technique 1 to cor-
rect predictions of technique 2). For a 

short prediction horizon, the PCA- and 
ICA-based approaches achieve better 
accuracy than the alignment prediction 
approach. However, as the prediction 
horizon increases, the alignment pre-
diction approach performs better. 

W e apply a variety of 
context prediction al-
gorithms in different 
context prediction do-

mains. A prediction algorithm’s per-
formance is always dependent on the 
input data’s structure and type. 

With our quantitative results, we ex-
pect that researchers will have a better 
understanding of prediction processes’ 
impacts and make better algorithmic 
decisions in future studies and imple-
mentations. Whereas the ARMA pre-
diction approach showed remarkable 
results on numeric-input time series 
incorporating trends and periodic 
patterns, the alignment prediction ap-
proach easily outperformed it in envi-
ronments dominated by frequently re-
appearing typical patterns, especially 
for long prediction horizons. Markov 
prediction is especially well suited for 
short prediction horizons and domi-
nated the other approaches in the sce-
nario with many nominal contexts. 
Regarding the ICA- and PCA-based 
prediction approaches, the former 
achieved better results with many 
nominal contexts, whereas the latter 
performed better with fewer nominal 
contexts. However, both methods re-
quire a priori knowledge on behavior 
patterns’ intermittency.
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Forschung (BMBF), in the framework of the Wire-
less Internet and mik21 projects, partially funded 
this project. 
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